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The mode coupling contribution to the transverse transport coefficients of a 
three-dimensional one-component plasma in a strong external magnetic field is 
calculated. For very strong fields it is found that the tagged particle diffusion 
rate, the thermal diffusion rate, and the coefficient of viscosity in the plane 
orthogonal to the field have a Bohm-like ~B -1 behavior. The mode coupling 
mechanism responsible for such an effect is always one that involves the finite- 
frequency upper hybrid modes. 
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1. I N T R O D U C T I O N  

In this pape r  the dependence  of the t r anspor t  coefficients of a classical one- 
c o m p o n e n t  p l a sma  on the s t rength of an appl ied  uniform magnet ic  field B 
is studied. Pa r t i cu la r  a t t en t ion  is given to the regime of s t rong magnet ic  
field, where the cyc lo t ron  frequency of the carr iers  exceeds the rate of 
collisions. In  this l imit  the con t r ibu t ion  of h y d r o d y n a m i c  f luctuat ions to 
the Green  K u b o  t ime cor re la t ion  funct ion expressions  for the t r anspor t  
coefficients is eva lua ted  by  using a mode  coupl ing theory.  We find that  a 
coupl ing  mechan i sm tha t  was neglected by previous  au thors  is responsible  
for an enhancement  of  the t ransverse  coefficients of self-diffusion, heat  con- 
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ductivity, and shear viscosity in three dimensions. The magnetic field 
dependence of our results is general The coefficients of these contributions 
are, however, evaluated only for small plasma parameter. The main results 
of this work have been given elsewhere. (1) 

There is considerable experimental and theoretical interest in the 
transport properties of fluids with charged carriers in a magnetic field. 
From a theoretical point of view I2 9) the understanding of such processes is 
incomplete, even in the simplest case of a fluid with only one species of 
carrier. The classical kinetic theory, based on the Balescu-Guernsey- 
Lenard (BGL) equation, predicts that in the strong-field regime the trans- 
port coefficients in the direction parallel to the field are unaffected, while 
those describing transport in the plane orthogonal to the field decrease as 
B 2 (see, e.g., Refs. 10 and 11). These predictions are in disagreement with 
both laboratory (12'13~ and computer experiments ~4'5'81 in a variety of 
systems. The transverse transpot rates are usually observed to be much 
larger than those predicted by the BGL equation and to behave as B -~ 
rather than B -2 for strong fields. In plasmas the B 1 strong-field behavior 
of the diffusion coefficients is known as Bohm diffusion (see, e.g., Ref. 14). 

The BGL equation only contains the effect of uncorrelated effective 
two-body collisions and describes the decay of spontaneous thermal fluc- 
tuations whose lifetime is small compared to the mean free time between 
collisions. Due to more complex dynamically correlated collision sequences 
the fluid can also sustain long-wavelength collective fluctuations or 
hydrodynamic modes that are long-lived on the kinetic time scale. The 
importance of the long-lived hydrodynamic fluctuations in determining the 
transport properties was first recognized for the case of neutral fluids, 
where they were shown to be responsible for the increase of the transport 
coefficients near the critical point ( ~  and for the long-time algebraic decay 
of the time correlation functions determining the transport coefficients (for 
areview see Ref. 16). The relevance of the same physical mechanism to the 
transport properties of charged fluids has also been recognized before, (4'61 
but its consequences have not yet been fully exploited. When an external 
magnetic field is applied, the particles are forced to gyrate in Larmor orbits 
around the field lines. For strong fields the mean free path of the carriers in 
the plane orthogonal to the field is effectively reduced to a value of the 
order of the Larmor radius rL, with rL=(kBT/m)i/2COB 1, where 
coe=e[BI/mc is the cyclotron frequency. As a consequence, the range of 
applicability of hydrodynamics in the direction transverse to the applied 
field is greatly extended. The hydrodynamic contribution to the transport 
coefficients is expected to increase considerably. For a strong enough field 
it can even dominate the BGL contribution. 

The transport properties of a plasma in a strong magnetic field have 



Electron Transport in a Strong Magnetic Field 681 

been studied by several authors/2 8~ Krommes and Oberman (6) have 
employed a mode coupling theory to evaluate the magnetic field depen- 
dence of the transport coefficients of a one-component plasma in two 
dimensions. Their results are in agreement with the two-dimensional com- 
puter simulations of Okuda and Dawson. (4t In their calculation Krommes 
and Oberman discard a pr ior i  a possible coupling mechanism involving the 
finite-frequency modes of the system. These are modes where the part of the 
dispersion relation that describes propagation does not vanish with the 
characteristic wavevector of the mode. Such modes appear in Coulomb 
systems due to both the long range of the potential and, in the case con- 
sidered here, the presence of the external magnetic field. In two dimensions 
the finite-frequency modes known as upper hybrid modes indeed play a less 
important role in determining the transport properties than the purely dif- 
fusive modes. In three dimensions they are, however, responsible for the 
most important truly three-dimensional (i.e., size-independent) con- 
tribution to the transverse transport coefficients, as shown below. Previous 
studies of the three-dimensional case (3/ have also neglcted the finite-fre- 
quency upper hybrid modes. They have concentrated on a size-dependent, 
effctively two-dimensional, effect. A more complete comparison with the 
literature will be given in Section 7. 

In the first part of the paper we discuss the magnetohydrodynamic 
modes of a one-component plasma in three dimensions. They are an essen- 
tial ingredient for our calculation. The hydrodynamic modes have been 
derived using a formal projection operator technique. 117~ 

In contrast with the neutral fluid case, the transport coefficients 
appearing in the hydrodynamic dispersion relations of the OCP are finite- 
frequency transport coefficients, as was pointed out by Baus. I1sl This means 
that the correct dispersion relations cannot be obtained from the 
phenomenological magnetohydrodynamic equations with frequency- 
independent transport coefficients.(11 

In Section 2 we derive the hydrodynamic equations using a projection 
operator technique and obtain the Green Kubo formula for the transport 
coefficients. 

The dispersion relation for the five hydrodynamic modes of the fluid 
and for the mode of self-diffusion in the limit of strong magnetic field are 
given and discussed in Sections 3 and 4, respectively. In Section 5 we 
evaluate the two-mode coupling contributions to the coefficient of self-dif- 
fusion, the coefficient of thermal conductivity, and the five kinematic 
viscosities. For very strong field the two-mode coupling theory no longer 
applies and the effect of higher order mode coupling effects needs to be 
taken into account. This is done approximately in Section 6 through a 
"self-consistent" mode coupling theory. 
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The relationship of our work to previous studies and the experimental 
relevance of our results are discussed in Section 7. 

2. GENERALIZED H Y D R O D Y N A M I C S  OF THE OCP IN AN 
EXTERNAL M A G N E T I C  FIELD 

We consider a system of N charged particles of mass m and charge e, 
immersed in a uniform neutralizing background of opposite charge and 
placed in an external uniform magnetic field B. The hydrodynamic 
equations can be obtained from the Liouville equation by using a formal 
projection operator technique. ~7/This method has the advantage of being 
formally exact--i t  is not restricted to small values of the plasma 
parameter--and of providing us with the Green-Kubo formulas for the 
transport coefficients. These expressions will be the starting point for 
eva!uating the hydrodynamic mode coupling contribution to the transport 
coefficients. 

The hydrodynamic equations for the system considered are equations 
for the average mass, momentum, and energy densities, defined as the 
ensemble averages of the microscopic mass density p(r), momentum den- 
sity g(r), and energy density e(r). 

It is convenient here to consider the Fourier transforms of the 
microscopic densities, defined as 

ak = fo dr [exp( - i k"  r ) ]  [a(r) - (a ( r ) )eq]  (2.1) 

where a denotes any of the densities, the brackets denote the average over 
an equilibrium grand canonical ensemble, and f2 is the volume of the 
system. From translational invariance of the equilibrium averages we find 

N 

Pk = ~ m e x p ( - i k ,  r ~ ) -  f2pfik, o (2.2a) 
n = ]  

N 

gk = ~ m v , , e x p ( - i k - r n )  (2,2b) 
n = l  

N 

Sk = ~ ~,, exp(-- ik" rn) - f2efk.o (2.2c) 
r t ~ l  

where 3k.O is a Kronecker delta, and p = ~p(r))eq and e = (e(r))eq are the 
average mass and energy density, with p = mn and n the number density. 
Here rn and % denote the position and velocity of the nth particle. The par- 
ticles are assumed to interact through a pairwise additive central Coulomb 
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potential V(r~m)=e2/r~m, with r~m= Ir,,-rm]; ~,~ is the energy of the nth 
pair, given by (18'19)'4 

l m v 2 + l  ~ 1 

m ~n 

where 

v(k, k') exp( - i k ' .  r,,m) (2.3a) 

k ' -  (k'  - k )  
v(k, k ' ) =  Vk, [k_k,12 (2.3b) 

and Vk is the Fourier transform of the Coulomb potential, V~ = 4~e2/k 2. 
Instead of using the microscopic densities given in Eqs. (2.2), it is 

covenient to introduce the following linear combinations: 

a l , k - -  Dk (2.4a) 

aj.k = e j ( ~ ,  ~)" gk for j = 2, 3, 4 (2.4b) 

= c~p' ~ + 0T 
as,k= Tk Pk ~-e ,, ek (2.4c) 

where 6/(~, fi), for j =  2, 3, 4, are three mutually orthogonal unit vectors 
given by 

~1(~, ~) = fi (2.5a) 

~2(~, ~) = (1/k• - (g. k)~]  (2.5b) 

~3(~, ~ = (1/~• x ~) (2.5c) 

with ~=B/IBI,  k 2 =k2~+k~, and ~ = k / l k  P. In the following the g depen- 
dence of the ei will not be indicated, unless necessary for clarity. In 
Eq. (2.4c) Tk represents the temperature fluctuation. 

The time evolution of the microscopic densities is formally given by 
the solution of the Liouville equation 

0 
•t ak(t) = Leak ( t  ) (2.6) 

where L e is the Liouville operator for the system. 

N 

Le = L + co B ~ Rb(vn) (2.7a) 
n = l  

4 It is possible, starting with the Liouville operator for a two-component system, to show that 
the effect of the uniform background can be incorporated by subtracting the k' = 0 term in 
the sum in Eq. (2.5c). 
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Here L is the Liouville operator for the system in the absence of external 
field, given elsewhere, I221 and 

Rb(v,,) = v.  • g" 0/~v,, (2.7b) 

with coB= e]B[/mc the cyclotron frequency. In the following the field B will 
be chosen to point in the z direction, i.e., ~ = ~. An inner product between 
phase functions is defined as 

1 
lim (akb k)eq (2.8a) (ak, b k)=N,~_~ ~ 

N / f 2  = n 

where we have used translation invariance of the equilibrium averages. The 
set of five variables a/.k are approximately mutually orthogonal, 5 but not 
orthonormal, 

(as. k, al.k) = mpS(k) (2.9a) 

(a/. k, a/,k) = pkB T (2.9b) 

(as, k, as,k) = (kB TZ/pC~,) + O(k 2) (2.9c) 

Here C,,= (1/p)(Oe/#T)]p is the specific heat at constant volume per unit 
mass, S(k) is the static structure factor, related to the pair correlation 
function h(k) and to the direct correlation function C(k) by 6 

S ( k ) = l + n k ( k ) = [ 1 - C ( k ) ]  ~ (2.10) 

For a system of neutral particles the small-k limit of S(k) defines the 
isothermal compressibility )~T=n l(On/@)l~, with p the equilibrium 
pressure, according to lim~._ o S(k)=)(r/Z ~ where 7~ is the com- 
pressibility of an ideal gas. For an electron gas S(k)~ k-,~ D for small k, 
where 2D= (4~ne2fl) ~/2 is the Debye length, and the isothermal com- 
pressibility is defined by (2~ 

S(k) k2D<l ' + (2.11) ZT/ 

Here we conclude our introduction on notation and definitions and 
proceed to discuss the equations of generalized hydrodynamics. 

5 Neglecting terms of O(k 2) in the normalization of the densities does not affect our results. 
This is because the mode coupling contributions to the transport coefficients that are most 
important in the limit of strong field only involve the kinetic part of the ajk. For these kinetic 
parts the orthogonality condition is exact to all orders in k. 

6 For a review of the static properties of the OCP see Baus and Hansen/2~ 
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The hydrodynamic equations have been obtained by using a standard 
projection operator technique. The derivation is analogous to that of the 
equations for the neutral fluid case. (17) The details are not given here. Our 
explicit calculations are restricted to a low-density OCP, where the coef- 
ficients of bulk viscosity vanish. <ll> For this reason we neglect the bulk 
viscosities in our derivation. The average densities ( a i k ( t ) )  are defined as 
averages of the a/k(t) over the initial (nonequilibrium) ensemble of the 
system. The resulting equations for the Laplace-transformed average den- 
sities, defined as 

) = f ?  dt e-='(a/k(t))  (2.12) 

for Re z > 0, are given by 

5 

[zc3 u + coBB u + ikf2u(k ) + k2U/j(k, z)] (CT/,k(a) ) 
j = l  

= (a /k( t  = 035 (2.13) 

The only nonvanishing elements of the constant matrix B~i are 

B34 = B43 = 1 (2.~4) 

The matrices f2 u and U~/are more conveniently expressed in terms of 
the microscopic mass current j~, momentum current Jgr~,k, and energy 
current "e lk, whose definition has been given elsewhere. <19"22'23> The fluxes 
associated with a+,k are linear combinations of these and are defined by 

j~ =j~ (2.15a) 

ji~,k=ei~(~)J~,k for i=2 ,  3,4 (2.15b) 

1 (j~,-pC~-~pT jr,) (2.15c) 

where 

c3T _ 0~T h 

with h = e + p  the enthalpy per unit volume and c~=-n  ~(c?n/~?T)lp the 
coefficient of thermal expansion. The frequency matrix s u can be written as 

~L/(k) = (a,. k, [ ' - '  �9 Ik)(aj,-k, a/,k) (2.16) 
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and it has the property 

f2ij(k)(ai, k, aj, k)=  -f2*(k)(ai, k, ai, k) (2.17) 

The transport matrix is given by 

( 1 /~,k) (a / -  a/k) 1 (2.18) g, / (k ,  z )  = / ~ / c p  I'~_ k, - -  k, 
zz/2B 

and vanishes for i = 1 or j = 1. Here Le is a modified or projected Liouville 
operator defined elsewhere 1151 and I~ are the projected currents, 1231 given by 
i _ g for i = 2 ,  3, 4, with I~,k - Oi~(~) I~ ,k ,  

--J~,k ~ { [mBS(k)]-l pk c~ r } ig&k _ .g _ (7 -- 1) pC~ T k  _ PQ~k,O (2.19a) 

and 

=J~,k (h/p C~)3~,k (2.19b) 

To make connection with the usual transport coefficients, U~/ can be 
expressed in terms of generalized transport tensors that satisfy certain sym- 
metry properties (Onsager's relations). The general expressions are not 
given here. 

The usual hydrodynamic equations describe the time evolution of the 
average densities for small values of k and of the frequency co=iz. 
Similarly, here we replace the transport matrix U//with its k--+ 0 limit. In 
contrast with neutral fluids, we need to keep the frequency dependence of 
the transport coefficients because we expect that some of the hydrodynamic 
modes of the OCP will be finite-frequency modes, i.e., modes whose 
propagating part does not vanish with k. This point is not merely a 
technical detail, because the density and, in our case, magnetic field depen- 
dence of the finite-frequency transport coefficients can be qualitatively dif- 
ferent from that of their zero-frequency form. A precise definition of the 
length and time scales relevant to the problem considered here will be given 
below. The five magnetohydrodynamic equations are explicitly given by 

Z(~k(Z)) + ik~n<fi2,k(z)) + ik~n<~3,k(z)) = (nk)  (2.20a) 

[z + ~ vo(z)k: + v2(z)k~ 1 ( fi2,1,(z) F -- ik~ ~z r ( 7"k(z) ) 

+ ~  . -2_+ 
n k 2 ( r q ' ( z ) ) - v 4 ( z ) k ~ k ~ ( ~ t 4 ' k ( Z ) )  

+ v2(z)-SVo(Z ) k:k• (2.20b) 
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(~'k(Z) > 

ikj_ (co2+ 1 ) 
+ - -  </~k(z) ) + [COB -- v3(z)k 2 - v4(z)k 2] <a4,k(z ) ) 

[ 2 ]  
+ v2(z)---~Vo(Z) k:k•163 (2.20c) 

[Z + v2(z)k2z + vl(z)k2 ](  a4,k(Z) ) + va(z ) kzk• ( a2,k(Z) ) 

- [ c 0 8 - v 4 ( z ) k 2 : - v 3 ( z ) k 2 ] ( a 3 , k ( Z ) )  = ( a 4 . k )  (2.20d) 

[z + D~(z)k 2 + D~(z)k2~ ] (Tk(z) ) + ik: 7 - 1 
o~ 

+ik• y -  1 ( a 3 , k ( Z ) )  = (Tk )  
(z (2.20e) 

where use has been made of Eq. (2.14) for the small-k form of the static 
structure factor. The five kinematic viscosities in Eqs. (2.44) are given by 
the following Green-Kubo formulas: 

Vo(Z; B) = ~-~- f /  dt e-=' f 2im ~ (;L _dt ) ,  I:gk) (2.21a) 

v ~ ( z ; B ) = ~  dte ='f~im(I~,._k(t),I~,k) (2.21b) 

ve (z ;B)=~  dte :' ~imo(I~_k(t),(~=k ) (2.21c) 

v3(z; B) fl ~ -- fo dt e .... lim ( (gx,k( t ) ,  lvz,k ) 
k ~ O  

(2.21d) 

(2.21e) 
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The two coefficients of thermal diffusion are given by 

1 fo ~ (2.22a) D ~l(z ) = pC~k  B T 2 

D ~ ( z )  = 1 fo ~ (2.22b) 
pC~kB T 2 

The viscosities v 3 and v4 are not true transport coefficients, because they 
are nonzero even in the absence of collisions. Therefore, they do not 
represent dissipation, but originate from the presence of the magnetic 
field. (11) 

d t e - : ~ l i m  5 5 (I~ dr),/~,k) 
k ~ 0  " 

d t d -  ~' lim 5 5 J ' x ,k )  (I~, k(t), 
k ~ 0  

3. HYDRODYNAMIC MODES 

In this section we discuss the solution of the set of 
magnetohydrodynamic equations (2.20). It is convenient to rewrite them in 
matrix form as 

[z6~j+ ~j(k, :)3 <ai, k(z)> -- <ai, k > (3.1) 

where summation over repeated indices is used. The explicit form of L4,.j is 
obtained by comparing Eqs. (3.1) and (2.20). Its frequency dependence is 
due to the frequency dependence of the transport coefficients. 

We express the solution of the set of equations (3.1) in terms of the 
eigenvalues and eigenfunctions of the matrix ~ .  The right eigenvalue 
problem is defined by 

~j(k,  - z , )10~(k)>  = z,  10~(k)) (3.2a) 

where z~ and OR are the eigenvalues and right eigenfunctions of L~ij, respec- 
tively. Here and below /~, v,... label the hydrodynamic modes. Since ~ j  is 
not self-adjoint, one also needs to solve the corresponding left eigenvalue 
problem, with eigenfunctions 0 k, defined by 

<0Li(k)I ~j(k,  - z~ )  = <0Lj(k)l z~ (3.2b) 

Right and left eigenfunetions are normalized according to 

5 

<0L(k) I OR.(k) > = 6~, (3.2C) 
j ~ l  

We are interested here in determining the long-time behavior of the average 
densities <aj, k(t)}. To do this we investigate the behavior of s 
around Re z = 0  for small values of k. We look for those poles of the 
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inverse of the operator on the right-hand side of Eq. (3.1) that are in the 
half-plane Re z < 0  closest to the imaginary axis. These are the 
hydrodynamic poles or modes and they determine the long-time behavior 
of (aj, k( t ))  if ~j(k,  z) is a regular function o f z  around Re z =0.  7 They are 
also defined as those roots of the determinant of the hydrodynamic matrix 

det I - z,  5 ij + ~j(k,  - z,)l = 0 (3.2d) 

whose real part vanishes as k--+ 0. 
The nonlinear eigenvalue problem defined in Eqs. (3.2) can be solved 

perturbatively, treating k as a small parameter. In the hydrodynamic 
regime one is interested in phenomena that occur over wavelengths large 
compared to the mean free path l between particle collisions. This defines 
the characteristic length scale of the problem and identifies kl as the dimen- 
sionless small parameter. 

For  a weakly interacting electron gas in the absence of external fields 
the mean free path is l =  Vo/Vc, where vo = (m/~) 1/2 is the thermal velocity 
and v,. the collision frequency associated with the linearized Landau 
operator, v,. = COpep ln(epl), with ep the plasma parameter, ~p = (47rn2 3) 1, 
and COp the plasma frequency, COp = Vo/2D. Equations (3.2), with B = 0, can 
be solved perturbatively and it can be shown that eigenvalues and eigen- 
functions have well-defined expansions as power series in kl. The resulting 
hydrodynamic description applies for k <~ l -~. 

The presence of the external magnetic field introduces several com- 
plications. The field introduces anisotropy in the problem and we expect 
that the properties in the direction of the field will be different from those 
in the plane orthogonal to the field. The single-particle dynamics along the 
field is unaffected by the field itself. In this direction the man free path l is 
the same as when B = 0  and hydroynamics is a good picture only if 
collisions are frequent. 

In the plane orthogonal to B the particles are forced to gyrate in Lar- 
mor orbits of radius r L = Vo/COB around the field lines when collisions are 
absent. The field prevents free streaming, just as collisions do in the zero- 
field situation. The mean distance traveled between collisions in the plane is 
of the order of the Larmor radius r L. Since rL/l= vc/COB, a strong field 
(defined by vc/coe~ 1) can reduce the mean free path in the transverse 
direction. This considerably extends the range of applicability of 
hydrodynamics in the xy plane. These qualitative considerations suggest 
that the appropriate small parameters to introduce when solving Eqs. (3.2) 

7 The effect of the singularities and branch points of L4ij(k, z) is discussed, for example, in 
Ref. 17. They do not contribute to the leading long-time behavior of (aj.u(t)). 

822/46/3 4 17 
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perturbatively are k~l and k• This statement is made more precise as 
follows. When solving Eqs. (3.2) we assume that each eigenvalue 

_ o k •  (3.3) z~ - z,(k~/kz~, 

admits a well-defined expansion in powers of k:/kz ~ and ki/k~_~. The 
appropriate scaling parameters k~ and k~ can be different for different 
modes. They are the maximum values of k: and k• up to which each 
approximate dispersion relation can be consistently used. They will be 
referred to as the "cutoffs" of the hydrodynamic modes. The cutoffs 
suggested by our previous physical considerations provide an upper limit 
to the value of the cutoffs for each mode. 

In Appendix A the results for the five hydrodynamic eigenvalues up to 
order k 2 and the right and left eigenfunctions to lowest nonvanishing order 
in k are given. Here we will give only the eigenvalues in the limit ~op/co 8 ~ 1. 
This is the regime of interest when evaluating the mode coupling correc- 
tions to the transport coefficients. 

There are five modes: four propagating finite-frequency modes and one 
purely diffusive mode. They are as follows: 

1. Two high-frequency modes, known in the Vlasov limit as the first 
Bernstein modes, or the upper hybrid modes. The dispersion relation is 
given for oJp/ooB ~ 1 by 

2PZr Oa~J 

1-  O)2p)+k~vz(iae~,)+O(k3) (3.4a) 

with a = +1. When B = 0, these modes reduce to the plasma modes. 

2. Two finite-frequency modes, known in the Vlasov limit as the 
propagating plasma modes, with frequency, for OOp/CO B ~ 1, 

( 7 kZ2 1 / ~  c~ 37 kS"~ 
zvo(k ) = i~roo p lk=l 

I + 2pZTCO B 2 ~ 4pZTCO]J 

+k2v{l(iG~plk:l) (1 +k~ ~ +k~v'~(i~a)plFC.l)+ O(k 3) (3.4b) 

When B = 0, these reduce to the shear modes. 

3. One diffusive heat mode, with dispersion relation 

z ~ ( k )  ~ 2 ~ Dlk•  =Djlk~+ + O ( k  4) (3.4c) 
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Here/~l = k•  and/r = k~/k. In Eqs. (3.4a) and (3.4b) terms of O(COp3/~o 3) 
have been neglected. 

t r The viscosities v u, v• vii, and v• are linear combinations of the five 
kinematic viscosities vj for j = 0, 1,..., 4 given in Eqs. (2.2). They are defined 
as follows: 

VlI(iGO.)B) = v2(i~709B)- i~rv4(i6(.OB) 

1 
v • = Vl(i~YagB) q-~ vo(iaoas)- iav3(iao9e) 

(3.5a) 

(3.5b) 

and 

2 vi4(i~co, Ik=l) =-~ Vo(iac~ Ik=[) (3.6a) 

r B 

(3.6b) 

As expected, they are finite-frequency complex transport coefficients. The 
thermal conductivities D r and D~ r are the familiar zero-frequency transport 
coefficients, defined by Eqs. (2.22) with z = 0. 

The viscosities and heat conductivities are evaluated in Appendix B to 
lowest order in the plasma parameter. The time evolution of the currents in 
this limit can be approximately described by the Landau kinetic equation. 
One finds that vii, vll, and D~ are O(o)~ Rev• Rev'• and O~ are 
O(co~-2); and Im v• as well as Im v~ are O(co~1). The right and left eigen- 
functions associated with the five modes are given in Appendix A. To 
leading order in Ogp/O)B, the upper hybrid modes represent velocity fluc- 
tuations in the xy plane, while the propagating plasma modes are 
associated with density fluctuations and fluctuations of velocity in the z 
direction. The heat mode represents temperature and density fluctuations. 

To complete the discussion of the hydrodynamic modes, we need to 
estimate their cutoffs. To estimate properly the cutoffs for the heat mode 
and the propagating plasma modes it is sufficient to evaluate the 
corresponding dispersion relations up to order k a and identify the cutoffs 

0 __ 0 ~ l  1 on the basis of their definition above. One finds kzH-kzp  and 
k~ ~ rr 1, but k~  ~ 1-1. For the upper hybrid modes the situation is more 
complicated. In replacing the transport matrix in Eq. (2.18) with its k--* 0 
limit we neglected the free streaming part of the propagator (of order kvo) 
compared to the collision part (of order v,, for small ap) and to the 
magnetic field part, of order e)e. When evaluating the transport coefficients 
relevant to the upper hybrid modes (to be evaluated at the frequency 
z = iacoB) a resonance or cancellation may occur in the propagator between 
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the frequency and the magnetic field part of the Liouville operator. This is 
seen, for example, in Appendix B in evaluating the transport coefficients for 
small ep. As a consequence, the k dependence of the transport coefficients 
can only be safely neglected for kv o ~ v,.. To verify if the upper hybrid mode 
could be extended up to k2_ ~ ri~ ~ we evaluated the dispersion relation for 
the upper hybrid mode in a simplified model (k :=0)  by keeping the k 
dependence of the transport coefficients. We find that the mode in question 
can indeed be extended up to k ~  1. Furthermore, its dispersion 
relation is well represented by Eq. (3.4a) up to such a value of k~. The 
longitudinal cutoff is again k:h~ ~ l 1. 

4, S E L F - D I F F U S I O N  

To complete the discussion of the transport properties of an electron 
gas in an external magnetic field, we consider the process of self-diffusion. 
This is the simplest of all transport phenomena in a fluid. The relevant 
microscopic density is the probability density Xk of a tagged particle in the 
fluid (denoted here as particle 1), given by 

Ck = exp(-- ik" rl) - 8k,o (4.1) 

whose time evolution is again governed by the Liouville operator LB. 
Proceeding as in Section 2, an equation for the Laplace transform of the 
average density (Ck(Z)) is obtained, in the form 

[z + k~k,q~ts(k, z; B)] (Ck(Z)) ~ (Ck)  (4.2) 

where again initial correction terms have been neglected and @~/~ is a 
generalized self-diffusion tensor, given by 

l 
~ ( k ,  z ;B)=  (j~ k, z - L ~  1)jfi'k) (4.3) 

with J~.k'5 __ Vj~ exp(--ik-r~) the tagged particle current. The long-time 
behavior of (Ck(t))  is again determined by the hydrodynamic poles of the 
inverse of the operator on the left-handside of Eq. (4.2). These are found by 
solving, for small k, the eigenvalue problem 

k~k~@(f~)( - z s ;  B)q 0r(k))  = z~ ] 0~r(k) ) (4.4) 

together with the corresponding left eigenvalue problem, where 

lim @~p(k, z ;B)=D~(z) (5~+ [DIl(z)--D~(z)] [2~D/~ (4.5a) 
~ ( ~ ( z ;  B )  = k ~ 0  
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with 

DIF(z) = dt e Z'(vlz(t) Vlz>eq (4.5b) 

D •  dte-Zt<Vlx(t)Vlx>eq (4.5c) 

There is only one purely diffusive mode, the mode of self-diffusion, with 
eigenvalue 

z ,(k)  2 2 = Dllk z + D •  + O(k 4) (4.6a) 

and right and left eigenfunctions 

0R(k) = 0~(k)= 1 + O(k) (4.6b) 

In Eq. (4.6a), DII and D• are the coefficients of self-diffusion along the field 
and in the plane orthogonal to the field, respectively, defined by Eq. (4.5) 
with z = 0. They can be evaluated to lowest order in the plasma parameter 
as described in Appendix B. For v~]o) B ~ 1, one obtains 

3,~-~ ~ O(coo) (4.7a) 
D}?'= mflv,~. 

D~) = 3]/-~ ra vC ~ O(c~ (4.7b) 

o l 1 The cutoffs for the mode of self-diffusion are k:s ~ and k~ ~ r L~. 

5. H Y D R O D Y N A M I C  M O D E  C O U P L I N G  C O N T R I B U T I O N  
TO T H E  T R A N S P O R T  C O E F F I C I E N T S  

The Green-Kubo expressions for the transport coefficients are given 
by Eqs. (2.21), (2.22), and (4.5). The objective of this section is to evaluate 
approximately these expressions in the region of strong (vc/~oB~ 1) and 
very strong (O.)p/O) B ~ 1) magnetic field. 

Denoting any of the frequency-dependent transport coefficients by 
2(z), one finds for the corresponding Green-Kubo formula the form 

with 

~oo 

2(z) J d t e - : ~ l i m  ;~ = C~(k,  t) (5.1a) 
0 k ~ O  

C~,(k, t )= ~ (L _k(t), Ie,k) (5.1b) 
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Here I~, k denotes the c~th Cartesian component (for the viscosities the flux 
is a second-order tensor) of the projected flux associated with 2. 

For very short times, i.e., t ~ v~ -1, the decay of this correlation function 
is described by the solution to the linearized Balescu-Guernsey-Lenard 
equation. The corresponding contributions to the transport coefficients, 
denoted by 2~ are evaluated in Appendix B, using the Landau kinetic 
equation. The transport coefficients in the direction of the field are found to 
be independent of the magnetic field, while those describing transport in 
the plane orthogonal to the field behave as co~ 2. 

For longer times, t >> v,. 1 following Kadanoff and Swift, (~51 we argue 
that the decay of the projected current correlation functions of Eq. (5.lb) is 
governed by the long-lived collective excitations in the fluid known as 
hydrodynamic modes. One then introduces a representation of the time 
evaluation operator in Eq. (5.1b) on the basis of successively higher 
products of densities a;,u, whose time decay is assumed to be governed by 
the hydrodynamic equations. To lowest nonvanishing order one obtains 

1 ~ 2 E ,  (I~,kai, qaj, q k)eq  
C~(k, t) -~ ~ ~2 q ~ f q  

i,j= 1 

x (a i , , ( t )  aj.k_,(t)/~,-k)eq (5.2) 
(as," uaj, u q)eq 

where we have used translational invariance of the equilibrium averages. 
Equation(5.2) is known as the two (hydrodynamic)-mode coupling 
approximation for the long-time behavior of C~( t ) .  A microscopic 
derivation of Eq. (5.2) has been given for neutral fluids of low density by 
using a systematic kinetic theory. 8 Recently Marchetti and Kirkpatrick (a4~ 
used analogous techniques to establish the same results for charged fluids 
in the absence of external fields. It is convenient to rewrite Eq. (5.2) in 
terms of hydrodynamic modes, defined as those linear combinations of the 
microscopic densities whose time decay is governed by a single exponential 
with relaxation time [z~(k)] -1, with kt, v,... = ha, vo, H. The hydrodynamic 
modes are 

5 
A, ,k ( t )  = ~2 0~(k) ajk(t) (5.3a) 

j--1 

with 
A~,k(t) = {exp[ -z , (k ) t ]  } A~k (5.3b) 

8 The effect of the singularities and branch points of c~ij(k, z) is discussed, for example, in 
Ref. 15. They do not contribute to the leading long-time behavior of (aj.u(t)). 
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Using the orthogonality properties of right and left eigenfunctions, one 
easily inverts Eq. (5.3a). Substituting the result into Eq. (5.2), we obtain 

with 

and 

1 Z 1 Z ' e x p { - [ z , ( q ) + z ~ ( k - q ) ] t }  C~(k, t) -- ~ ~,~ :h ..... ,q ~'~ k 

• SL'~(q, k --q) S~}(q, k --q) (5.4a) 

SLr k -- q) = (A~+_qA~+q k, I~k) (5.4b) 

2 S~}(q, k -  q ) =  (Au,qAu, k _ q ,  Ir _k) (5.4c) 

where we have introduced the adjoint hydrodynamic modes A,~, defined as 

5 

A ~ _ , =  ~ 0~(q) a/, q (5.4d) (a / , . ,  a/,q) 1 = 1  

The quantities S+~ ~v and S~} will be referred to as the mode coupling 
amplitudes. In the following we will need the explicit expression of the 
modes to leading order in cop/COs. This is easily obtained from Appendix A. 
or the upper hybrid modes one has 

, (or) 
Ah~q, =---=x/2 [- - - o - e 3 ( q )  ~ g q  - -  iea(q)" gq] + O ~ + O(q) 

A+ ~- 1 fl,,/zP (cop)_~B 
ho, q / - 2 - 2 [ - a e 3 ( - f t ) ' g  q + i e 4 ( - q ) ' g - q ] + O  +O(q) 

for the propagating plasma modes one has 

(5.5a) 

(5.5b) 

A ~ o , q  - , , f ~  n q  q= g~ ,q  + - -  - -  

and for the heat mode one has 

(5.6a) 
J \cos] P~ T (Dp 

g=' q ZT COp 

AH, q 7-- 1 - - - n q  +O(q) (5.7a) 

A + _ pCv T q+O(q) 
,. q kBT 2 (5.7b) 
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The transport coefficients 2(z) can be written as 

~(z) : ~(z) + ~;~(z) (5.8a) 

where )/eg(z) is the contribution to 2(z) from the short- and intermediate- 
time regions, approximated here with 2~ and 62(z) is the contribution 
from the coupling of two hydrodynamic modes, given by 

+/xv # v  _ _  S~ ( q , k - q )  S~B(q, k q) 
1 ~ 1 2 '  lira zTz~(-~+z~--~--q) (5.8b) 

Similarly, the coefficients of self-diffusion Dll and D• can be written as 

DH(• = D[~(g• 6D,t(• ) (5.9a) 

where the hydrodynamic mode coupling contribution 6DI,(• ) is given by 

1 ~ . ,  < U l z ( x ) A # q C  q > e q < A ; _ q C q l ) l z ( x ) > e q  

6DII(• = ~ ~ ~ z,(q) + z~,(q) 
(5.9b) 

l ~ = h~,va,H q 

where the z(x) component of Vl refers to 6Dll(6D• In Eq. (5.9b) the limits 
k ~ 0 and z ~ 0 have been taken. 

In the remainder of this section we evaluate the two mode coupling 
contribution to the transport coefficients. Since the magnetic field increases 
the range of validity of hydrodynamics in the xy plane, we expect the two 
mode coupling contribution to the transverse transport coefficients to be 
important and, for strong enough fields, to dominate the bare or regular 
part. We are mainly interested here in the magnetic field dependence of the 
transport coefficients for strong fields. Consequently, we will neglect all 
mode coupling contributions that have the same magnetic field dependence 
as the corresponding regular parts and that simply represent higher order 
~p corrections to ~reg. 

The evaluation of the mode coupling contribution will be exemplified 
for D• Only the results will be given for all the other transport coef- 
ficients, since the calculation is analogous to that of 6D• The relevant 
mode coupling amplitudes can be obtained from the results given in 
Ref. 21. 

The amplitude for the coupling of the mode of self-diffusion with a 
heat mode vanishes. There are therefore only two mode coupling con- 

,h ,v where sh and ,v tributions to Dtt(• ), i.e., 6Dil(.)=6Dtl(a)+6D11(• 61t(• ) 611(• ) 
arise from the coupling of the mode of self-diffusion with the upper hybrid 
modes and the propagating plasma modes, respectively. In general, the 
contribution to 62 from the coupling of modes p and v will be denoted by 
62. ~. 
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The amplitudes are easily evaluated, with the result 

(vlxAh,~,qC q)eq( Ah+_q CqVlx)eq = ~pfl-[- 0 \(DB,/ (5.10a) 

and 

1 ~pq~ O~p 
(v'xAva'q)eq( A~+" q Cqv'x)eq =2pfl co~ q'2 t- 0 \o)e/ (5.10b) 

The corresponding mode coupling contributions are 

1 f, dq 1 
6D~[=Zpfl~=~+l (27~)3 z~(q) + Zho(q) 

(5.11a) 

1 ~Op 2 ~, f, dq q~ 1 
6D~ - 2pfl ~o~ ~= +~ (27~)3 q2 z~(q) + z~(q) 

(5.11b) 

where the bulk limit has been taken. The prime in Eqs. (5.11) denotes the 
cutoff in the q integration. The cutoffs for q~ and q• have to be chosen as 
the smallest among the cutoffs of the two hydrodynamic modes involved in 
the integral. The transport coefficients in the dispersion reltion on the right- 
hand side of Eqs. (5.11) are identified with their regular or bare part, 2 reg, 
approximated here with the Landau value, 2 ~ Noth modes in Eq. (5.11a) 
have cutoffs 0 l-1 qz ~ and qO ~ r ~ .  Therefore we truncate the integration at 
0 (vc/D~l) 1/2 and o _ qz~ = q• - re  ~. Equation (5.1 lb) yields 

[ Re v~ 1 
6D~ - 4rczpfl r2~2 \D~J [2r~ DO J 

Re 

+ DI I J )  \e~M 
+ 3 1 1  Y~(TO)B)~-~O(OOP~2 (5.12a)  

Substituting the values of the bare transpot coefficients given in Eqs. (4.7) 
and (B.3), we find 

6D~' v c o9~ 
- -  "~ 0.6ap - -  ~ (5.12b) 
D ~ ~p COp 

or c~D~ -~ O(co~ We will discuss this result below. 
The cutoffs for the mode coupling integral for 6D~ have to be iden- 

tified with those of the propagating plasma modes, for which 
qO v..~qo ~ l -1 .  It follows that 6D~ O(e4 2 2 "v~ ~op/coB). This represents a small 
plasma parameter correction to the bare diffusion coefficient D ~ , and is 
therefore neglected. 
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The relevant amplitudes for the longitudinal diffusion coefficient Dll 
are 

(vlzA~c~'qC-q)eq(A'+' qCqVl~)eq=2pfl-'}- \co./ (5.13a) 

1 ((Op~4l_O((Dp~6 (5.13b) (YlzAha,qC-q)eq(Ah +, qCql)lz)eq~--~ \(j)B] \(DB j 

and the corresponding mode coupling contributions are 

1 ~+ f' dq 1 ~O(ep4~oo) (5.14a) 
6D~~ - 2pfl ~ = _, (2~z) 3 z~(q) + z~(q) 

1 (~Op~ 4 ~+ f, dq 1 "~0 ep--~, (5.14b) 
~D~=2-p--~\c~ ~= _1 (2~)3z,(q)+zho(q) 

Since D~l~O(ep~O~~ the above mode coupling contributions are either 
small-ep corrections to D R or corrections in cop/co~. The relevant viscosities 
are the linear combinations appearing in the hydrodynamic modes, defined 
in Eqs. (3.5) and (3.6). 

The only "interesting" mode coupling contribution to the viscosities 
for the upper hybrid modes is 

1 2 f, dq V 1 a 'a") o- 
6v~h~(iac~ = 2pfl , ,,= +1 (2n) 3 [_2 (1 + + ~ ( a ' +  a") 

+ ~  (1 - a 'a")  iaCOB+Zl,,(q)+zho,(q) 

- 2pB ~ Jacob + 2 Re zh+(q) 

1 
2 aa') iac~B +-2zh~,(q) l (5.15a) + 

All the other mode coupling contributions to both v• and vii do not lead to 
any new magnetic field dependence. The right-hand side of Eq. (5.15a) is 
easily evaluated, with the result 

Im 6vy"~(iao.) = 72n2n \v~J 31co, + Im v~ (5.15c) 
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where use has been made of the fact that v~ = v~(iafos) is real. Using Eqs. 
(3.5b) and (B.1), one then obtains 

Re 6v~h~(iafo~) v C fo~ 
Re v~ -- 0.56gp - -  fop (0p 

Im 6V~"h~ V~. fo~ 
Im v~ ~- 0.76ep - -  ---5 (2) p ~O p 

(5.15d) 

(5.15e) 

We have then Re h~ho 6V. ~ O(fo ~ and Im 6v~~ O(foB). The mechanism 
responsible for his anomalous contribution to the transverse viscosity is 
analogous to that determining the mode coupling contribution to D• 
There is no anomalous mode coupling contribution to vll(i~rfos), nor to the 
viscosities for the propagating plasma modes. 

Finally, we consider the coefficients of thermal conductivity D~ and 
D~. Once more, the relevant role is played by the upper hybrid modes that 
lead to the following anomalous mode coupling contribution to D~ �9 

6D~hoH=~[I+(O_~_p~ ]2 ~ f ,  dq 1 (5.16a) 
k~ ~=+1 (27r) 3 zH(q) + z~(q)  

For consistency we use the ideal gas values in Eq. (16a), (@/Ou)p=2/3. 
Again, the cutoffs of upper hybrid and heat modes are of the same order. 
We obtain 

~SDTLhaH 25 (Vc~ '/2 [1 D~D 

, } +75-  [Re v • + Dr ~ (5.16b) 
,w L 

or 

D ~  _ 0 . 1 6 ~ p - - ~  (5.16c) (J)p (.Op 

Again we have 6D~ h~ ~- O(fo~ 
We conclude this section with a few comments on the results obtained. 

In contrast with the previous literature, (3 6) we find that it is always a 
coupling mechanism involving the upper hybrid modes that gives rise to an 
anomalous contribution, of O(fo~ to the transport coefficients D~_, D~ r ,  
and Re v.(iafo~). This is because the upper hybrid modes can be extended 
to q• ~ rE -1 = mflfo~, while the cutoff for the propagating plasma modes in 
the xy plane is ~1-1. In the literature it was always assumed a priori that 
high-frequence modes such as the hybrid modes are not responsible for an 
enhancement of the transport coefficients ~3'4) via a mode coupling 
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mechanism. There is, however, no reason for believing that the K a d a n o f f  
Swift arguments break down for finite-frequency modes that are 
hydrodynamic in character, since their lifetime diverges as k ~ 0. It has also 
been shown elsewhere that a fluctuating hydrodynamics approach leads to 
results that are identical to those given here. ~2~) 

Physically the dominant role of the upper hybrid modes can be 
understood as follows. For large field these modes are similar to shear 
waves in neutral fluids, since, to leading order in COp/COB, they represent 
velocity fluctuations in the xy plane. More precisely, they are associated 
with vortices in the plane. Such vortices are excited over a wide range of 
length scale, down to r L, and are very effective in enhancing the transport 
properties. 

Finally, we notice that for very strong fields, such that COp/coB ~ 
[-gp2 ln(~pl)]l/2, the right-hand side of Eqs. (5.12b), (5.15d), and (5.15e), and 
(5.16c) is of O(1), i.e., the mode coupling corrections become of the same 
order as the bare transport coefficients. For larger magnetic fields the two- 
mode-coupling approximation is no longer adequate and more complicated 
mode coupling effects need to be taken into account. This will be done in 
an approximate way in the next section by employing a "self-consistent" 
mode coupling theory. 

6. S E L F - C O N S I S T E N T  M O D E  C O U P L I N G  T H E O R Y  

An approximate way of taking into account the coupling of more than 
two hydrodynamic modes is to replace all the transport coefficients appear- 
ing on both the left- and the right-hand sides of the mode coupling 
equations by their mode coupling values and solve simultaneously the 
entire set of equations. (~7) It is important to note that when the two-mode 
coupling theory becomes inadequate, our estimate of the hydrodynamic 
cutoffs also breaks down. The latter were in fact evaluated using bare trans- 
port coefficients. In the very strong-field regime of interest here the trans- 
verse transport coefficients differ considerably from their bare value. Con- 
sequently, in a self-consistent mode coupling theory the cutoffs must also 
be expressed in terms of the mode coupling value of the transport coef- 
ficients. Denoting by ~2 sc the self-consistent mode coupling correction to 
the transport coefficient 2, with 2 = ;~o + ~2sc in this regime, the set of mode 
coupling equations is 

(SD~ ~- 4~2p fl Re ~o oo dq• qj_{icoB+ (v~ + D~l)q ~ 

+ [6D~ + bv~(icoB)] q~_ } ~ (6.1a) 
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6v~_(i~ro~8) ~- 4rc2pfll :oI~"v")'" ~oI(EwR~ a~(i~B'~/2 dq• q• [ioco s + 2v~lq 2_ 

+ 2 Reav~(ie)~)q~] I 

( 2 )  } 
2vllqz + 2av~(io'ooe)] + ~ l + ~ c r '  [i(~+20')098+ 0 2 

o ' = •  

(6.1b) 

~SO IT'sc~---~2pfl 1 -~- ~ Re f f / : " dq• dq• 
p ~o ~o 

x Eio)B+(v~ ro 2 rsc 2 + D• )q~ + E6v~(icoB) + 6D• )q• ] -1 (6.1c) 

In Eqs. (6.1) the longitudinal transport coefficients are still approximated 
by their bare Landau values, since their mode coupling corrections are 
much smaller than their bare values for the magnetic field used here. The 
set of equations (6.1) is easily solved, with the result that ~iD~, 
Re (%s~(ic%), and rsc B-~. 6D• ~ More precisely, one finds 

k B T  (SD~ ~_ eD e~/2(ep In ~pl )3/2 (6.2a) 
m ~  B 

Re 6v~( ioJ s) ~ oq, kB T e1/2(~ p In a71) 3/2 (6.2b) 
m o  B 

kBT oor'sc ~- ~r elp/2(ep In epl )3/2 (6.2c) 
mo) B 

where eD, cq,, and ~r are numerical constants, given by c~ D _~ 0.5; ~v -~ 3.1, 
and c~r_~ 1.5. For large enough magnetic field the self-consistent mode 
coupling contribution dominates all other contribution and all the above 
transverse coefficients are observed to have a Bohm-like ~ o b  -L behavior. 
An estimate of the value of B where the Bohm-like behavior dominates is 
given by the value of B, where the bare hydrodynamic cutoffs have to be 
replace with their mode coupling values, and is found to be 
oojco B ~ 0.25 (~2 in ep- 1 ) 1/2. 

A a result of the analysis presented here, the magnetic field dependence 
of the transverse transport coefficients D• D~ r ,  and Re v• collec- 
tively denoted by 2• can be described as follows: 
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(a) A classical region, described by the BGL kinetic theory, where 
)o• ~ B -2, for 

2.5(e 2 In ep 1 )~/2 < cop/coB < vjcoB 

(b) A plateau region, where the two hydrodynamic mode coupling 
contribution to the transverse transport coefficients dominates 
and 2• ~ B ~ 

(e~ In gp l ) ] 1/2 < COp/CO 8 < 2.5 (g~ in e j7 ~ ) 1/2 

The mode coupling mechanism responsible for the enhancement 
of 2• is always one that involves the finite-frequency upper 
hybrid modes. 

(c) A Bohm-like region, where a self-consistent mode coupling 
theory is needed and 2• ~ B -l ,  for 

COp/coe < 0.2S(ep 2 In ep 1 ) 1/2 

7. D I S C U S S I O N  

We have evaluated the hydrodynamic mode coupling contribution to 
the transport coefficients of a three-dimensional OCP in an external 
magnetic field. We have shown that the long-lived collective excitations of 
the system are responsible for an enhancement of the transport rates in the 
plane orthogonal to the field over their BGL values. The tr~msverse coef- 
ficients of self-diffusion D• heat conductivity D r ,  and kinemtic viscosity 
Re v• were found to behave as B 1 in the strong-field regime. This 
behavior is observed experimentally in a variety of systems. The relevant 
mode coupling mechanism is always one that involves the finite-frequency 
upper hybrid modes. This mechanism was neglected in the previous 
literature, where, as a consequence, no Bohm-like behavior was predicted 
for the transport coefficients of an infinite three-dimensional electron 
gas. (3-6) 

The details of the results obtained here have been summarized at the 
end of the previous section. It is important to stress that the quantitative 
predictions of the mode coupling theory are strongly dependent on the 
values of the hydrodynamic cutoffs. We have obtained a reliable estimate of 
the magnetic field and plasma parameter dependence of the cutoffs, but we 
do not know their exact value. Consequently, the numerical coefficients in 
Eqs. (6.2) are not precisely known. The exact coefficients can in principle 
be obtained by using kinetic theory. We stress, however, that the magnetic 
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field dependence of the mode coupling contributions does not depend on 
the introduction of cutoffs, nor on the small plasma approximation used in 
their evaluation. 

Several authors (2 7) have studied the problem of transport in plasmas 
in a strong external magnetic field, with attention to the transverse coef- 
ficient of self-diffusion D l .  Krommes and Oberman ~6/ have employed a 
self-consistent mode coupling theory to study the two-dimensional 
problem. In two dimensions only the upper hybrid modes are propagating 
modes. The two propagating plasma modes are replaced by a single dif- 
fusive mode, usually referred to as the "convective cells mode." Such a 
mode can be extended to k i  ~ rL I. The dominant mode coupling effect is 
then due to the coupling of the convective cell mode with the mode of self- 
diffusion and leads to three well-defined regions ( ~ B  2, B 0, B ~) in the 
mgnetic field dependence of D• The contribution from the coupling of the 
upper hybrid modes with the diffusive mode is negligible in this case for 
small ep because it is of higher order in the plasma parameter. The results 
of Ref. 6 are in good agreement with the two-dimensional numerical 
simulation of Okuda and Dawson. 14) In contrast, we find that in three- 
dimensions (3d) the dominant effect is due to the upper hybrid modes. 

The 3d problem has also been considered by Okuda and Dawson (4'51 
and Montgomery et al. ~3~ All these authors effectively reduced the problem 
to a 2d one by considering the case where the size of the system in the 
direction of the field L: is small. They evaluated a contribution to 6 D l ,  
denoted here by 6D~ Lt, due to the coupling of the propagation of plasma 
waves with the diffusion modes that behaves as B -1 for very strong fields, 
but is size-dependent and vanishes in the thermodynamic limit (L: ~ oo). 
As discussed in Ref. 1, ~D sh~ evaluated here dominates c~D~ rl only if 
L~/l>~ ep 2. This implies that our calculation is not relevant for laboratory 
plasma, where ep is very small. Furthermore, in all 3D computer 
experiments of Okuda and Dawson L~ is only a few ean free paths and the 
measured effect is indeed the finite-size contribution, as discussed by the 
authors. We will return to the question of the observability of our result 
below. 

Recently Rose (7) has used a fluctuating hydrodynamic approach to 
compute D l  for 3d systems. He also finds that the contribution from 
hydrodynamic fluctuations leads to a correction to the BGL value of D z 
that is independent of the magnetic field. He does not however discuss the 
need for a self-consistent theory at stronger fields. 

The anomalous high-B contribution to the transverse transport rates 
evaluated here should be observable in a solid -state plasma, where the 
density of electron carriers at room temperature can be ~ 6 x  10~3cm -3 
and the plasma parameter can then be large enough for our bulk effect of 
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dominate the finite-size one. Furthermore, the two effects have a different ep 
dependence: their ratio is of order ep2. Consequently, it might be possible 
to see the transition from essentially 2d to bulk 3d behavior by changing 
the size or the parameters of the system. The 3d behavior should be obser- 
vable for L~ > 10 2 cm for a plasma at room temperature. Possible can- 
didates include solid-state plasmas, but they are multicomponent systems 
and can sustain hydrodynamic modes not present in the OCP. It is possible 
that a new mode coupling mechanism may lead to an extra contribution to 
the transverse transport coefficients. To answer this, one needs to consider 
the mode coupling theory for two- or multicomponent systems, 

A P P E N D I X  A 

In this Appendix we list eigenfunctions and eigenvalues of the 
hydrodynamic matrix ~ j  for arbitrary values of the parameter (J)p/cos. The 
form of right and left eigenfunctions for O)p/U)8 ~ 1 is also given. 

The eigenvalues are the solutions of the determinant (3.2d). Eigen- 
functions and eigenvalues are assumed to have a power series expansion in 
k of the form 

and 

z.(k) = z~~ z( 9 )+ z(.2) + O(k 3) (A.la) 

R L 0R,L(o) + R L(I/ ( 2 - 0 ~  + 0~' + O  k ) 0,,' ( k ) -  R,L(-~) (A.!b) 

where z (n) and R,L(,,) k'. _~ 0~, are of order Due to the singular small-k behavior 
of the direct correlation function [responsible for the terms of O(k -1) in 
Eqs. (2.20b) and (2.20c)], terms of O(k 1) appear in the eigenvalues. There 
are five modes: four finite-frequency modes (i.e., modes whose propagating 
part does not vanish with k) and one diffusive mode. For the two upper 
hybrid modes, labeled with ha, with a =  • and the two propagating 
plasma modes, labeled with va, with ~ =  +1, we find z (2n+ 1)=0, and 

I ( (,~2 (,~2 \ 1/2~ 1/2 (o) ia 4k~2 wPW~/ | (A.2) z h ~ ( k ) = ~ - ~ o  h 1+  1-- 
J 

I ( (I)2 ('12 \ 1/271/2 
i~r ~p~8~4  | (A.3) 1-  

, / 2  c% / j 

.2 ~ .2 ~ 1/2 Here ~oh = (CUp -1- cu e) is known as the upper hybrid frequency. The terms 
of O(k 2) are given in terms of the terms of O(k ~ as follows: 
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z~2~(k)= ~" - ~ k 2 1+  k: 
212(zff)) 2 + o~] PZT 

% ~ (~k~+v4.k2) +2rob 1 + ~  

4 2 
-~ 2 [2 (z~~  2 + co~] 

( __2c% 2v2~ ) 2 ~2 2 \ V l #  ~_ 3Vow_ _ + COpk~k a . zIO) V4,u 

( c~ [c2"~(vl~k~ v2~k:)} (A.4a) -co~ l+(z~COl)2 =] + 

All the kinematic viscosities in Eq. (A.4a) are finite-frequency viscosities, 
evaluated at ~(~ i.e., 

v /~ = v,(z t~ ~ (A.4b) 
for j =  0, 1,..., 4. 

The left and right eigenvalues of the four modes above are, respec- 
tively, 

~co~v L~ + (A5.a) ,, �9 - 

and 
l �9 io~ ~o~2 2 ~ / ~k• ) + % k _ ]  ] 

2 "9 ~ (0) 2 2 ~2 -copk;kY[( lZ  , ) +copk:] 
10~(k)) = C,,(~) (A.5b) 

. / 4  0 , / 

[(7 - col co~ ~ 2 ~2 - 1)/~] ,k• I[(z .  ) + % k : ] J  

where Cu(~) is a normalization constant, given by 

(z,,) (a.5c) 
+ copk: c . ( ~ )  = 1__ z~o~ co~ 2 2 "2 

% ~  (-7(0)~2r,~2 .a.. 2 2 ~2 

The left and right eigenfunctions are given here in the form of row and 
column vectors, respectively. They are normalized according to 

<0~(k) ] 0~(k) )e6>, + O(k2) (A.6a) 

822/46/3-4-18 
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with 

5 

( a l b ) =  ~ ajbj (A.6b) 
j = l  

There is a single diffusive heat mode with dispersion relation 

zH(k) = Dirlk2: + D r k  2 + O(k 4) (A.7a) 

and left and right eigenfunctions given by 

(0L(k ) [= (  7--1 0 ' ~ x  ' 0 , 0 , 1 ) + O ( k )  (A.7b) 

and 

= 0 + [0R(k)) O(k)  (A.7c) 

The only modification introduced in the heat mode by the presence of the 
magnetic field is the anisotropy. 

In this Appendix we list the transport coefficients appearing in 
Eqs. (3.4) in the limit of small plasma parameter, as obtained from the 
Landau form of the Balescu-Guernsey-Lenard kinetic equation. 

The Landau approximation for the zero-frequency transport coef- 
ficients has been evaluated before. (1~ It is, however, essential here to con- 
sider the case of finite-frequency transport coefficients, since they have a 
different magnetic field and plasma parameter dependence than their zero- 
frequency form. The viscosities for the upper hybrid modes are 

A P P E N D I X  B 

ia 1 2v ~. 
v~ ia~ ~) - mflo)~ t- mfir 5,/-s (B.la) 

ir 1 2v, 
v~ iac~ - 3mficO~B F- mflco~ 9 ~  (B. lb) 

, v -  

i a  1 5.,,/7 
v~ -- 4mflco~ + mflvc 4 (B.lc) 
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2 ia 8v C 
v~ iaco~) ~- 3mfl(.o~ -~ rnfico] 45./'~x 

1 icr 5x/-~ 
v~ i~r co B) "~ 4mflco 8 + mflv C 4 

I 5 , / ;  
v~l(iacoB) -~ 2 Re v~ " - -  

mflv c 2 

7vc 5ia 

( K i d )  

(B.le) 

(B.2a) 

v~ ( iaco B) ~- mflco~ 15x/-s 6rnflco~ (B.2b) 

In all of the above the leading nonvanishing terms in cojco~ have been 
kept. The viscosities for the propagating plasma modes are 

l ( 2v-~-i f fcop[s  l (B.ga) 
v~ I/~:l) = ~ \5x/Tr / 

iacop Is (B.3b) 
4mflco 2 

iaco, [s 
(B.3c) 

mfico~ 

(B.3d) 

1 Yc 
V~163 -~ mflco 2 10x/- ~ 

1 2vc 
v~ I,~1 ) -~ mfico2 5 , ~  

2m/~coB 

v~ 1s ~ 1 
m f lco B 

(B.3e) 

Equation (B.3a) is exact as a function of coB. The imaginary parts of 1) 3 and 
v4 are neglected because they are of order (cop~coB) 3. For completeness, the 
two coefficients of thermal conductivity are 

1 10.~/~ (B.4a) 
D~-m&, 3 

1 5v,. 
D ~ - mflco~ 6 ~  (B.4b) 

The coefficients of self-diffusion have been given in Eqs. (4.6). 
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